

Quarkonia measurements in p+p and d+Au collisions at $\sqrt{s} = 200 \text{GeV}$ by the PHENIX Collaboration.

Cesar Luiz da Silva - Iowa State University for the PHENIX Collaboration

Using quarkonia as a medium thermometer

- Quarkonium dissociation has been long suggested to probe the temperature of the QGP
- to fully understand this "thermometer" requires:
 - p+p baseline:
 - production mechanism
 - color singlet (CSM) [PLB102, 364 (1981)]
 - CSM s-channel cut [PRL100,032006(2008)]
 - color octet (COM) [PRD51,1125(1995)]
 - color evaporation(CEM) [PLB67,217(1977)]
 - 3-gluon pQCD [Eur.Phys.J.C39,163(2005)]
 - feed-down contributions
 - Cold Nuclear Matter effects
 - parton distribution modifications
 - breakup in hadronic matter

PHENIX Apparatus

 $|\eta| < 0.35 \ \Delta \Phi = 2 \times \pi/2$

•full reconstruction of di-electrons

 $-2.2 < \eta < -1.2$ 1.2 $< \eta < 2.2$ $\Delta \Phi = 2\pi$

•full reconstruction of di-muons

combinatorial background obtained from like-sign or mixed event pairs

- Studied in p+p collisions: J/ψ , ψ ', χ_c , Υ
- Studied in d+Au collisions: J/ψ , ψ ', Υ

p+p baseline

Quarkonia Measured by PHENIX

New J/ ψ yield in p+p at $s^{1/2}=200$ GeV Rapidity Dependence

3x more statistics than that our previous publication.

Good agreement with previous results!

See M. Wysocki's poster

New J/ ψ yield in p+p at $s^{1/2}=200$ GeV Rapidity Dependence

New color singlet model in better agreement with our data.

New J/ ψ yield in p+p at s^{1/2}=200 GeV

Good agreement with new CSM in p_T.

Ψ ' yield in p+p at $s^{1/2}=200$ GeV

See M. Donadelli's poster

 ψ ' /J/ ψ ratio in central rapidity doesn't show a strong energy or p_T dependence.

Feed-down to J/ψ :

decay	PHENIX	world avg.*
$\psi' o J/\psi$	$8.6\pm2.5\%$	$8.1 \pm 0.3\%$
$\chi_c \to J/\psi$	< 42% (90% CL)	$25 \pm 5\%$
*P. Faccioli, et al., arXiv:0809.2153 [hep-ph]		

HERA-B: [Eur. Phys. J. C49, 545 (2007)] CDF: PRL 79, 572 (1997).

J/Ψ polarization in p+p at $s^{1/2}=200$ GeV

$$\frac{dN}{d(\cos\theta)} = A\left(1 + \lambda\cos^2(\theta)\right)$$

- •inclusive J/ψ (prompt + feed down).
- J/ψ in helicity frame

See M. Donadelli's poster

J/ψ polarization in p+p at $s^{1/2}=200$ GeV

λ< longitudinal
λ>transverse

H. Haberzettl and J. P. Lansberg, PRL100,032006 (2008)

Consistent with new CSM at mid-rapidity.

3-gluon fusion pQCD [Khoze et al., Eur.Phys.J.C39,163(2005)] also predicts longitudinal polarization

- •COM predicts $\lambda > 0$ for $p_T >> M_{J/\psi}$ (not confirmed experimentally)
- •Cannot rule out CEM, no prediction for COM at this p_T range.
- •Important information as a reference for upcoming polarization measurement in d+Au and Au+Au

$\Upsilon(1S+2S+3S)$ yield in p+p at s^{1/2}=200 GeV

12 unlike-sign pairs and 1 like-sign pair in [8.5,11.5] GeV/c² mass region.

Continuum estimated to be <15%, or <1.6 counts.

$\Upsilon(1S+2S+3S)$ yield in p+p at $s^{1/2}=200$ GeV

Continuum removed only at midrapidity.

Rapidity dependence can be used to calculate total cross section.

PH**ENIX PRELIMINARY global error = 10%

$$B\frac{d\sigma_{\Upsilon}}{dy}\bigg|_{|y|<0.35} = 114^{+46}_{-45}pb$$

Cross section at $y\sim0$ follows world trend Compatible with STAR measurement.

d+Au Cold Nuclear Matter Effects

Understanding J/ψ suppression in d+Au

PRC 77, 024912 (2008). Revised fits to account for all systematic errors. Erratum: arXiv:0903.4845 [nucl-ex]

CNM for different production kinematics

E.G. Ferreiro, F. Fleuret, J.P.Lansberg, A. Rakotozafindrabe. hep-ph/0809.4684

Using EKS98

- •Suppression from CNM depends on quarkonium production mechanism.
- •x2 can be larger if production process is $p+p \rightarrow J/\psi+g$.

$$R_{cp} = \frac{1}{N_{coll}/N_{coll}^p} \frac{dN/dy}{dN/dy^p}$$
 $p \equiv 60\text{-}88\% \text{ centrality}$

Intrinsic calculation

30x more statistics than 2003 run.

Most of systematic errors cancel out in R_{cp} .

Upcoming fits to R_{dA} can better constrain $\sigma_{breakup}$.

$$R_{cp} = \frac{1}{N_{coll}/N_{coll}^p} \frac{dN/dy}{dN/dy^p}$$
 $p \equiv 60\text{-}88\% \text{ centrality}$

EKS98

Intrinsic calculation

30x more statistics than 2003 run.

Most of systematic errors cancel out in R_{cp} .

Upcoming fits to R_{dA} can better constrain $\sigma_{breakup}$.

Curves: R. Vogt - private communication

$$R_{cp} = \frac{1}{N_{coll}/N_{coll}^p} \frac{dN/dy}{dN/dy^p}$$
 $p \equiv 60\text{-}88\% \text{ centrality}$

EPS08

Intrinsic calculation

30x more statistics than 2003 run.

Most of systematic errors cancel out in R_{cp} .

Upcoming fits to R_{dA} can better constrain $\sigma_{breakup}$.

Curves: R. Vogt - private communication

$$R_{cp} = \frac{1}{N_{coll}/N_{coll}^p} \frac{dN/dy}{dN/dy^p}$$
 $p \equiv 60\text{-}88\% \text{ centrality}$

Intrinsic calculation

30x more statistics than 2003 run.

Most of systematic errors cancel out in R_{cp} .

Upcoming fits to R_{dA} can better constrain $\sigma_{breakup}$.

Curves: R. Vogt - private communication

Upcoming new results from d+Au data

Measurement of other quarkonia states in the new d+Au data will provide a better picture of Cold Nuclear Matter effects and perhaps help in the understanding the production mechanism.

and 500 GeV run

 $\mu^{+}\mu^{-}$ 1.2<|y|<2.2

Data from the last 72 hours. Still counting...

Outlook

- PHENIX has measured different quarkonium states in p+p and d+Au in different rapidity regions
- New data from 2006 p+p collisions agree with our published results and is better described by CSM with s-channel contribution (Lansberg CSM)
- ψ ' / J/ ψ ratio has no strong p_T and energy dependence
- first measurement of J/ ψ polarization agrees with CSM s-channel contribution at mid-rapidity and still consistent with CEM. Waiting for COM and 3-gluon fusion predictions at our p_T range
- brand new preliminary J/ψ R_{cp} measurement in d+Au has smaller statistical and systematic uncertainties and can better constrain the cold nuclear matter effect estimations
- upcoming modification factors of heavier quarkonium states in d+Au will also contribute to disentangle the production and medium effects